3.4.16 \(\int \cot ^2(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\) [316]

3.4.16.1 Optimal result
3.4.16.2 Mathematica [C] (verified)
3.4.16.3 Rubi [A] (verified)
3.4.16.4 Maple [B] (warning: unable to verify)
3.4.16.5 Fricas [A] (verification not implemented)
3.4.16.6 Sympy [F]
3.4.16.7 Maxima [F]
3.4.16.8 Giac [F(-1)]
3.4.16.9 Mupad [F(-1)]

3.4.16.1 Optimal result

Integrand size = 25, antiderivative size = 114 \[ \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=-\frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f} \]

output
-(a-b)^(3/2)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f+b^( 
3/2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f-a*cot(f*x+e)*( 
a+b*tan(f*x+e)^2)^(1/2)/f
 
3.4.16.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 6.30 (sec) , antiderivative size = 724, normalized size of antiderivative = 6.35 \[ \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=-\frac {a \sqrt {\frac {a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \cot (e+f x)}{f}+\frac {b \left (a^2-2 a b-b^2\right ) \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (1+\cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \csc (2 (e+f x)) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right ) \sin ^4(e+f x)}{a f (a+b+(a-b) \cos (2 (e+f x)))}+\frac {4 b \left (a^2-2 a b+b^2\right ) \sqrt {1+\cos (2 (e+f x))} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (\frac {\sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (1+\cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \csc (2 (e+f x)) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right ) \sin ^4(e+f x)}{4 a \sqrt {1+\cos (2 (e+f x))} \sqrt {a+b+(a-b) \cos (2 (e+f x))}}-\frac {\sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (1+\cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \csc (2 (e+f x)) \operatorname {EllipticPi}\left (-\frac {b}{a-b},\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right ) \sin ^4(e+f x)}{2 (a-b) \sqrt {1+\cos (2 (e+f x))} \sqrt {a+b+(a-b) \cos (2 (e+f x))}}\right )}{f \sqrt {a+b+(a-b) \cos (2 (e+f x))}} \]

input
Integrate[Cot[e + f*x]^2*(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
-((a*Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/(1 + Cos[2*(e 
+ f*x)])]*Cot[e + f*x])/f) + (b*(a^2 - 2*a*b - b^2)*Sqrt[(a + b + (a - b)* 
Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sq 
rt[-((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)* 
Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e + f*x)]*EllipticF[ArcSin[Sqr 
t[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[ 
e + f*x]^4)/(a*f*(a + b + (a - b)*Cos[2*(e + f*x)])) + (4*b*(a^2 - 2*a*b + 
 b^2)*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/( 
1 + Cos[2*(e + f*x)])]*((Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(1 + Cos[ 
2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)]) 
*Csc[e + f*x]^2)/b]*Csc[2*(e + f*x)]*EllipticF[ArcSin[Sqrt[((a + b + (a - 
b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*x]^4)/(4*a* 
Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]) - (Sqrt 
[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2) 
/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e 
+ f*x)]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + 
f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*x]^4)/(2*(a - b)*Sqrt[1 + 
 Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]])))/(f*Sqrt[a + b 
 + (a - b)*Cos[2*(e + f*x)]])
 
3.4.16.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.96, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4153, 376, 25, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \tan (e+f x)^2\right )^{3/2}}{\tan (e+f x)^2}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x) \left (b \tan ^2(e+f x)+a\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 376

\(\displaystyle \frac {\int -\frac {a (a-2 b)-b^2 \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\int \frac {a (a-2 b)-b^2 \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {b^2 \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+(a-b)^2 \left (-\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {b^2 \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}+(a-b)^2 \left (-\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {(a-b)^2 \left (-\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)\right )+b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {(a-b)^2 \left (-\int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}\right )+b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {(a-b)^{3/2} \left (-\arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )\right )+b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )-a \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

input
Int[Cot[e + f*x]^2*(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(-((a - b)^(3/2)*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x] 
^2]]) + b^(3/2)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]] 
 - a*Cot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/f
 

3.4.16.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 376
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1 
)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^ 
2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a* 
d*(q - 1)) + d*((b*c - a*d)*(m + 1) + 2*b*c*(p + q))*x^2, x], x], x] /; Fre 
eQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && LtQ[m, -1] & 
& IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.4.16.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(472\) vs. \(2(100)=200\).

Time = 4.53 (sec) , antiderivative size = 473, normalized size of antiderivative = 4.15

method result size
default \(\frac {\left (\sqrt {a -b}\, b^{\frac {3}{2}} \operatorname {arctanh}\left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {b}}\right ) \sin \left (f x +e \right )-\cos \left (f x +e \right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sqrt {a -b}\, a +\arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a^{2} \sin \left (f x +e \right )-2 \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a b \sin \left (f x +e \right )+\arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) b^{2} \sin \left (f x +e \right )-\sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, a \right ) \left (a +b \tan \left (f x +e \right )^{2}\right )^{\frac {3}{2}} \cos \left (f x +e \right )^{2} \cot \left (f x +e \right )}{f \sqrt {a -b}\, \left (\cos \left (f x +e \right )+1\right ) \left (a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b \right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}}\) \(473\)

input
int(cot(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/f/(a-b)^(1/2)*((a-b)^(1/2)*b^(3/2)*arctanh(1/b^(1/2)*((a*cos(f*x+e)^2+b* 
sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*sin(f*x+e)- 
cos(f*x+e)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(a-b)^ 
(1/2)*a+arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+ 
1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*a^2*sin(f*x+e)-2*arctan(1/(a-b)^(1/2) 
*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc( 
f*x+e)))*a*b*sin(f*x+e)+arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e) 
^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*b^2*sin(f*x+e)-(a-b)^ 
(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*a)*(a+b*tan 
(f*x+e)^2)^(3/2)/(cos(f*x+e)+1)/(a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/((a*cos( 
f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*cos(f*x+e)^2*cot(f*x+e)
 
3.4.16.5 Fricas [A] (verification not implemented)

Time = 0.84 (sec) , antiderivative size = 710, normalized size of antiderivative = 6.23 \[ \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\left [\frac {2 \, b^{\frac {3}{2}} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) \tan \left (f x + e\right ) - {\left (a - b\right )} \sqrt {-a + b} \log \left (-\frac {{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \tan \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} - 4 \, a b\right )} \tan \left (f x + e\right )^{2} + a^{2} + 4 \, {\left ({\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{3} - a \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right ) - 4 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{4 \, f \tan \left (f x + e\right )}, -\frac {4 \, \sqrt {-b} b \arctan \left (\frac {\sqrt {-b} \tan \left (f x + e\right )}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\right ) \tan \left (f x + e\right ) + {\left (a - b\right )} \sqrt {-a + b} \log \left (-\frac {{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \tan \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} - 4 \, a b\right )} \tan \left (f x + e\right )^{2} + a^{2} + 4 \, {\left ({\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{3} - a \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right ) + 4 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{4 \, f \tan \left (f x + e\right )}, -\frac {{\left (a - b\right )}^{\frac {3}{2}} \arctan \left (-\frac {2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} \tan \left (f x + e\right )}{{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - a}\right ) \tan \left (f x + e\right ) - b^{\frac {3}{2}} \log \left (2 \, b \tan \left (f x + e\right )^{2} + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) \tan \left (f x + e\right ) + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{2 \, f \tan \left (f x + e\right )}, -\frac {{\left (a - b\right )}^{\frac {3}{2}} \arctan \left (-\frac {2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} \tan \left (f x + e\right )}{{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - a}\right ) \tan \left (f x + e\right ) + 2 \, \sqrt {-b} b \arctan \left (\frac {\sqrt {-b} \tan \left (f x + e\right )}{\sqrt {b \tan \left (f x + e\right )^{2} + a}}\right ) \tan \left (f x + e\right ) + 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} a}{2 \, f \tan \left (f x + e\right )}\right ] \]

input
integrate(cot(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[1/4*(2*b^(3/2)*log(2*b*tan(f*x + e)^2 + 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt 
(b)*tan(f*x + e) + a)*tan(f*x + e) - (a - b)*sqrt(-a + b)*log(-((a^2 - 8*a 
*b + 8*b^2)*tan(f*x + e)^4 - 2*(3*a^2 - 4*a*b)*tan(f*x + e)^2 + a^2 + 4*(( 
a - 2*b)*tan(f*x + e)^3 - a*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a)*sqrt( 
-a + b))/(tan(f*x + e)^4 + 2*tan(f*x + e)^2 + 1))*tan(f*x + e) - 4*sqrt(b* 
tan(f*x + e)^2 + a)*a)/(f*tan(f*x + e)), -1/4*(4*sqrt(-b)*b*arctan(sqrt(-b 
)*tan(f*x + e)/sqrt(b*tan(f*x + e)^2 + a))*tan(f*x + e) + (a - b)*sqrt(-a 
+ b)*log(-((a^2 - 8*a*b + 8*b^2)*tan(f*x + e)^4 - 2*(3*a^2 - 4*a*b)*tan(f* 
x + e)^2 + a^2 + 4*((a - 2*b)*tan(f*x + e)^3 - a*tan(f*x + e))*sqrt(b*tan( 
f*x + e)^2 + a)*sqrt(-a + b))/(tan(f*x + e)^4 + 2*tan(f*x + e)^2 + 1))*tan 
(f*x + e) + 4*sqrt(b*tan(f*x + e)^2 + a)*a)/(f*tan(f*x + e)), -1/2*((a - b 
)^(3/2)*arctan(-2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b)*tan(f*x + e)/((a 
- 2*b)*tan(f*x + e)^2 - a))*tan(f*x + e) - b^(3/2)*log(2*b*tan(f*x + e)^2 
+ 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a)*tan(f*x + e) + 2* 
sqrt(b*tan(f*x + e)^2 + a)*a)/(f*tan(f*x + e)), -1/2*((a - b)^(3/2)*arctan 
(-2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b)*tan(f*x + e)/((a - 2*b)*tan(f*x 
 + e)^2 - a))*tan(f*x + e) + 2*sqrt(-b)*b*arctan(sqrt(-b)*tan(f*x + e)/sqr 
t(b*tan(f*x + e)^2 + a))*tan(f*x + e) + 2*sqrt(b*tan(f*x + e)^2 + a)*a)/(f 
*tan(f*x + e))]
 
3.4.16.6 Sympy [F]

\[ \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \cot ^{2}{\left (e + f x \right )}\, dx \]

input
integrate(cot(f*x+e)**2*(a+b*tan(f*x+e)**2)**(3/2),x)
 
output
Integral((a + b*tan(e + f*x)**2)**(3/2)*cot(e + f*x)**2, x)
 
3.4.16.7 Maxima [F]

\[ \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{2} \,d x } \]

input
integrate(cot(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^2, x)
 
3.4.16.8 Giac [F(-1)]

Timed out. \[ \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

input
integrate(cot(f*x+e)^2*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.4.16.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int {\mathrm {cot}\left (e+f\,x\right )}^2\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

input
int(cot(e + f*x)^2*(a + b*tan(e + f*x)^2)^(3/2),x)
 
output
int(cot(e + f*x)^2*(a + b*tan(e + f*x)^2)^(3/2), x)